856 research outputs found

    The ground state phase diagram of the diluted ferromagnetic Kondo-lattice model

    Full text link
    We investigate the existence of several (anti-)ferromagnetic phases in the diluted ferromagnetic Kondo-lattice model, i.e. ferromagnetic coupling of local moment and electron spin. To do this we use a coherent potential approximation (CPA) with a dynamical alloy analogy. For the CPA we need effective potentials, which we get first from a mean-field approximation. To improve this treatment we use in the next step a more appropriate moment conserving decoupling approach and compare both methods. The different magnetic phases are modelled by defining two magnetic sublattices. As a result we present zero-temperature phase diagrams according to the important model parameters and different dilutions.Comment: accepted for publication in Journal of Physics: Condensed Matte

    Ferromagnetism and non-local correlations in the Hubbard model

    Full text link
    We study the possibility and stability of band-ferromagnetism in the single-band Hubbard model for the simple cubic (SC) lattice. A non-local self-energy is derived within a modified perturbation theory. Results for the spectral density and quasiparticle density of states are shown with special attention to the effects of k-dependence. The importance of non-local correlations for the fulfillment of the Mermin-Wagner theorem is our main result. A phase digram showing regions of ferromagnetic order is calculated for the three dimensional lattice. Besides, we show results for the optical conductivity and prove that already the renormalized one-loop contribution to the conductivity cancels the Drude peak exactly in case of a local self-energy which is not anymore true for a non-local self-energy.Comment: 11 pages, 10 figures, accepted for publication in PR

    Spin-filter effect of the europium chalcogenides: An exactly solved many-body model

    Full text link
    A model Hamiltonian is introduced which considers the main features of the experimental spin filter situation as s-f interaction, planar geometry and the strong external electric field. The proposed many-body model can be solved analytically and exactly using Green functions. The spin polarization of the field-emitted electrons is expressed in terms of spin-flip probabilities, which on their part are put down to the exactly known dynamic quantities of the system. The calculated electron spin polarization shows remarkable dependencies on the electron velocity perpendicular to the emitting plane and the strength of s-f coupling. Experimentally observed polarization values of about 90% are well understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures; http://orion.physik.hu-berlin.de

    Magnetic phase diagram of the Kondo lattice model with quantum localized spins

    Full text link
    The magnetic phase diagram of the ferromagnetic Kondo lattice model is determined at T=0 in 1D, 2D, and 3D for various magnitudes of the quantum mechanical localized spins ranging from S=1/2 to classical spins. We consider the ferromagnetic phase, the paramagnetic phase, and the ferromagnetic/antiferromagnetic phase separated regime. There is no significant influence of the spin quantum number on the phase boundaries except for the case S=1/2, where the model exhibits an instability of the ferromagnetic phase with respect to spin disorder. Our results give support, at least as far as the low temperature magnetic properties are concerned, to the classical treatment of the S=3/2-spins in the intensively investigated manganites, for which the ferromagnetic Kondo-lattice model is generally employed to account for magnetism.Comment: 8 pages, 6 figure
    • …
    corecore